Электротехника. Расчеты электрических цепей

Математика
Типовые задачи курсового расчета
Примеры решения задач
Интегралы
Вычислить объем тела
Вычислить площадь поверхности
Физика
Лабораторные работы по физике
Квантовая механика
Физика электромагнитных взаимодействий

Информатика

Графика и анимация для Web-сайтов
Компьютерные сети
Беспроводные технологии передачи данных
Диагностические утилиты TCP/IP
Электротехника
Лабораторные работы по электротехнике
Конспект лекций
Методы расчета и анализа
электрических цепей
Переходные процессы
Графические и аналитические
методы расчета
Типовые задачи по начертательной
геометрии
Контрольная работа № 1
Основной курс начертательной геометрии
Комплексный чертеж точки (Эпюр Монжа)
Аксонометрические изображения

Метрические задачи

Инженерная графика
Контрольная работа №3
Указания к выполнению задания
по эскизам деталей
Сборочный чертеж
Выполнение технического рисунка
и аксонометрии детали
Построить три вида детали и выполнить
необходимые разрезы
Выполнение сборочного чертежа
Выполнение курсовой работы
по сопромату
Электротехнические материалы
Построение эпюр
Расчеты на прочность
Понятие о напряжениях и деформациях
Расчет сварных соединений

Диаграмма усталостной прочности

Классическая физика
Физика Ньютона
Сила упругости
Выполнение задач по физике
Решение задач по ядерной физике
Законы радиоактивного распада
Ядерная и нейтронная физика
Взаимодействие нейтронов с ядрами
Атомная физика
Курс лекций
Художественная культура и искусство
Первобытное искусство и мифология
Культура и искусство Древнего Египта
Древнегреческая лирика
Литература и искусство эпохи
Возрождения (Ренессанса)
Архитектура периода Киевской Руси
Химия
Получение оксидов
Термохимия
Органическая химия
Неорганическая химия
Атомная энергетика
Программа развития ядерной энергетики
Развитие ядерной индустрии
Эволюция ядерных арсеналов
Ионизирующее излучение
Атомные реакторы и батареи
Крупные аварии на АЭС
Энергетическая  безопасность
 

Электрической цепью называют совокупность соединённых друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток.

На рисунке 1.1, б дан пример параллельного соединения потребителей. При этом на всех элементах, включённых параллельно, действует одно напряжение, а токи в этих элементах обратно пропорциональны их сопротивлениям.

Электрические цепи могут быть простыми и сложными.

Основные законы электрических цепей.

Закон Джоуля–Ленца позволяет определить количество тепловой энергии, которая выделяется на сопротивлении r при протекании по нему электрического тока.

Расчет простых цепей постоянного тока

Упрощение исходной цепи можно также осуществить заменой элементов, соединённых звездой, схемой, в которой потребители соеднены треугольником.

Расчёт разветвлённой электрической цепи постоянного тока

Расчет сложных цепей постоянного тока В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи.

Расчёт сложной цепи с помощью законов Кирхгофа.

Расчёт сложной цепи методом контурных токов

Метод межузлового напряжения даёт возможность весьма просто, без решения систем уравнений, провести анализ и расчёт электрической цепи, содержащей несколько параллельно соединённых активных и пассивных ветвей, включённых между двумя узлами, например, между а и с на рисунке 1.4.

Расчёт сложной цепи методом межузлового напряжения

Для проверки правильности расчетов необходимо составить баланс мощностей.

Построение потенциальной диаграммы электрической цепи.

Определение токов в цепи изображенной на рисунке 2 методом узловых напряжений начинаем с обозначения двух узлов цепи буквами а и с.

Потенциальную диаграмму строим для первого контура цепи, схема которой изображена на рисунке 1. 4. ,В рассматриваемый контур в который входят два источника питания  и , а также два потребителя энергии r 1 , r 2 .

Электрические цепи переменного тока Основные понятия об однофазном переменном токе.

Индуктивность есть коэффициент пропорциональности между потоко-сцеплением и током.

Количество электрической энергии, превращающейся в потребителе в другой вид энергии, зависит от средней мощности P за период переменного тока, которая называется активной мощностью, измеряется в ваттами ваттах (Вт)

При параллельном соединении двух и более ветвей с различным типом реактивного сопротивления может возникать резонанс токов.

Расчёт цепей переменного тока В цепях переменного тока изменение во времени питающего напряжения влечёт за собой изменение тока, а также магнитного и электрического полей, связанных с цепью.

Модуль комплексного числа , (2.21) аргумент этого числа, (2.22) . Складывать эти числа необходимо в алгебраической форме записи.

Для определения полной мощности на участке или во всей цепи используется выражение вида , (2.27).

Требуется определить токи ветвей, показания всех приборов, составить баланс мощностей.

По аналогии с цепью постоянного тока осуществляем эквивалентные преобразования для цепи на рисунке 2.3.

Если разветвленный участок имеет только две ветви, включенные параллельно, то токи в ветвях после разветвления можно определять без расчета U ab, используя формулу разброса.

Реактивную мощность потребителей определяют как произведение квадрата тока реактивного элемента на его сопротивление.

Трехфазная цепь переменного тока состоит из трехфазного источника питания, трехфазного потребителя и проводников линии связи между ними.

Алгоритм анализа трёхфазной цепи зависит от схемы соединения нагрузки, исходных параметров и цели расчёта.

Расчет трехфазной цепи при соединении потребителей звездой.

Комплексные сопротивления фаз различны, следовательно, нагрузка несимметричная.

Расчёт трёхфазной цепи при соединении потребителей треугольником.

Для определения линейных токов используем первый закон Кирхгофа для точек a, в, c схемы на рисунке 2.10

Нелинейные электрические цепи постоянного тока.

Графический метод расчета неразветвлённой цепи с нелинейными элементами.

Расчёт нелинейной цепи при параллельном соединении элементов Необходимо определить, какие токи проходят в параллельных ветвях, содержащих нелинейные элементы r1 и r2 (рисунок 3.6, а), если ток Iвх = 0,92 А

Аналогично предыдущему пункту рассмотрим расчет нелинейной цепи постоянного тока со смешанным соединением элементов на конкретном примере.

В данном примере рассмотрен наиболее общий случай, когда все элементы цепи нелинейные. Если в задаче один или два элемента линейные, то ход решения не меняется, отличие будет лишь в том, что при первоначальном вычерчивании соответствующие ВАХ будут прямолинейными.

Магнитные цепи

По виду магнитные цепи делятся на неразветвлённые и разветвлённые, а по структуре на однородные и неоднородные.

Определение магнитодвижущей силы цепи Для определения магнитодвижущей силы цепи при заданном значении индукции (решение прямой задачи) широко применяется метод, базирующийся на законе полного тока.

Определение магнитной индукции в заданном сечении Из-за нелинейности магнитной цепи выражения (4.1)–(4.6) нельзя использовать для непосредственного определения магнитной индукции на участке по заданной величине магнитодвижущей силы (обратная задача).

Трансформаторы

Полный поток, сцеплённый с первичной обмоткой, Ф1 = Ф + Фσ1. (5.1).

При наличии тока во вторичной обмотке поток взаимоиндукции Ф создаётся действием намагничивающих сил F1 и F2, где F1 = w1I1, a F2 = w2I2.

ЭДС Eσ1 пропорциональна магнитному потоку Ф σ1, а ЭДС E σ2 – потоку Ф σ2.

Приведенный трансформатор и его схема замещения В реальном трансформаторе числа витков w1 ≠ w2 , поэтому Е1 ≠ Е2 , I1 ≠ I2 и, как следствие, различны активные r1, r2 и реактивные x1, x2 сопротивления обмоток.

В реальных трансформаторах между первичной и вторичной обмотками существует магнитная связь.

Режимы работы трансформатора В зависимости от величины сопротивления нагрузки трансформатор может работать в трех режимах

Для определения напряжения короткого замыкания, потерь в обмотках и сопротивлений rк и xк проводят опыт короткого замыкания.

В трансформаторе имеются два вида потерь: магнитные потери, вызванные прохождением магнитного потока по магнитопроводу, и электрические потери, возникающие при протекании тока по обмоткам.

Расчёт параметров трёхфазного трансформатора Трёхфазный трансформатор имеет следующие данные: номинальная мощность Sн = 63000 ВА, номинальные напряжения U1Н = 10000 B и U2Н = U20 = = 400 В, потери холостого хода P0 = 265 Вт, потери короткого замыкания PКН = 1280 Вт, напряжение короткого замыкания uк составляет 5,5 % от номинального значения, ток холостого хода i0 cоставляет 2,8 % от номинальной величины.

Абсолютное значение фазного напряжения короткого замыкания.

Принцип действия асинхронного двигателя

Асинхронная машина при неподвижном роторе

Физическая сущность явлений при коротком замыкании асинхронной машины принципиально та же, что и в трансформаторе.

Работа асинхронной машины при вращающемся роторе

Вращающий момент асинхронного двигателя Если считать, что двигатель работает в установившемся режиме, т. е. при n = const, то в этом случае, по условию равновесия моментов,M = M0 + M2, где M – вращающий момент, развиваемый двигателем;M0 и M2 – моменты сопротивления при холостом ходе двигателя и его нагрузки.

При пуске двигателя n = 0, s = +1, имеем пусковой момент МП.

Формула Клосса вместе с выражением для определения частоты вращения ротора n = n1(1 – s) позволяет получить механическую характеристику в виде зависимости n = f(M), которая представлена на рисунке 6.5.

Расчёт параметров асинхронного трёхфазного двигателя с короткозамкнутым ротором

Механическую характеристику M = f(s) строим по уравнению Клосса (6.21), а для построения n = f(M) дополнительно используем зависимость n = n1(1 – s).

Выпрямители переменного тока

Однофазная схема выпрямления с нулевой точкой.

Напряжение на нагрузке – несинусоидальное пульсирующее , состоит из полусинусоид вторичного напряжения трансформатора, следующих одна за другой.

Однофазная мостовая схема выпрямления

Среднее значение напряжения на выходе выпрямителя.

Трехфазная схема выпрямления с нулевой точкой

Напряжение на нагрузке состоит из отрезков синусоид длительностью 2π/3. Разложение такой периодической кривой в ряд Фурье имеет вид .

Трехфазная мостовая схема выпрямления

Максимальное значение  тока диода в случае активной нагрузки . (7.39).

Фильтрация выпрямленного напряжения Напряжение, получаемое от выпрямителей, является не постоянным, а пульсирующим.

Из формул для сопротивления реактивных элементов следует, что с увеличением частоты тока сопротивление катушки индуктивности (дросселя) растёт, а конденсатора уменьшается.

 

На главную