Физика электромагнитных взаимодействий

Математика
Типовые задачи курсового расчета
Примеры решения задач
Интегралы
Вычислить объем тела
Вычислить площадь поверхности
Физика
Лабораторные работы по физике
Квантовая механика
Физика электромагнитных взаимодействий

Информатика

Графика и анимация для Web-сайтов
Компьютерные сети
Беспроводные технологии передачи данных
Диагностические утилиты TCP/IP
Электротехника
Лабораторные работы по электротехнике
Конспект лекций
Методы расчета и анализа
электрических цепей
Переходные процессы
Графические и аналитические
методы расчета
Типовые задачи по начертательной
геометрии
Контрольная работа № 1
Основной курс начертательной геометрии
Комплексный чертеж точки (Эпюр Монжа)
Аксонометрические изображения

Метрические задачи

Инженерная графика
Контрольная работа №3
Указания к выполнению задания
по эскизам деталей
Сборочный чертеж
Выполнение технического рисунка
и аксонометрии детали
Построить три вида детали и выполнить
необходимые разрезы
Выполнение сборочного чертежа
Выполнение курсовой работы
по сопромату
Электротехнические материалы
Построение эпюр
Расчеты на прочность
Понятие о напряжениях и деформациях
Расчет сварных соединений

Диаграмма усталостной прочности

Классическая физика
Физика Ньютона
Сила упругости
Выполнение задач по физике
Решение задач по ядерной физике
Законы радиоактивного распада
Ядерная и нейтронная физика
Взаимодействие нейтронов с ядрами
Атомная физика
Курс лекций
Художественная культура и искусство
Первобытное искусство и мифология
Культура и искусство Древнего Египта
Древнегреческая лирика
Литература и искусство эпохи
Возрождения (Ренессанса)
Архитектура периода Киевской Руси
Химия
Получение оксидов
Термохимия
Органическая химия
Неорганическая химия
Атомная энергетика
Программа развития ядерной энергетики
Развитие ядерной индустрии
Эволюция ядерных арсеналов
Ионизирующее излучение
Атомные реакторы и батареи
Крупные аварии на АЭС
Энергетическая  безопасность
 

Электромагнитное взаимодействие Мир состоит из взаимодействующих частиц. Всё, что мы видим, построено из элементарных частиц, есть такие кирпичики мироздания. На макроскопическом уровне много взаимодействий, на самом деле, в основании всего лежит четыре типа фундаментальных взаимодействий

Электрический заряд Частицы, участвующие в электромагнитном взаимодействии, обладают специальным свойством - электрическим зарядом.

Электромагнитное поле Ещё раз повторю, мир состоит из взаимодействующих частиц, но частицы не взаимодействуют друг с другом. Этот вопрос занимал ещё Ньютона. Он считал, что сама идея взаимодействия через пустое пространство это абсурд. Нынешняя физика так же отвергает взаимодействие через пустое пространство. Например, откуда Земля "знает", что где-то от неё на расстоянии 150 млн. км находится Солнце, к которому она должна притягиваться?

Уравнения поля

Полевые уравнения Поток вектора Циркуляция потока

Статическое электромагнитное поле (электростатика) В статическом электромагнитном поле отсутствует магнитное поле, а электрическое описывается двумя уравнениями

Общие свойства электростатического поля Берём замкнутый контур, вычисляем циркуляцию. Второе уравнение утверждает, что, какой бы контур мы не взяли, циркуляция равна нулю. Отсюда следует, что силовые линии электромагнитного поля не могут быть замкнутыми

Потенциал Работа по перемещению заряда по замкнутому контуру равна нулю.

Поля, создаваемые распределениями зарядов с хорошей симметрией

Цилиндрическая симметрия Вот мы имеем плоскость YZ , заряженную до бесконечности. Эта плоскость заряжена с постоянной плотностью s . s называется поверхностная плотность заряда.

Поле системы точечных зарядов. Принцип суперпозиции

Потенциал системы точечных зарядов Пусть имеется один точечный заряд q . Это частный случай сферической симметрии. область занята зарядом, по этой области размазан электрический заряд, мы должны полностью охарактеризовать этот заряд и найти создаваемое им поле

Поле диполя Диполем называется такое распределение заряда, для которого полный заряд равен нулю

Сила, действующая на ограниченное распределение заряда во внешнем поле имеем поле, имеем какой-то заряд, размазанный по некоторой области, локализованный заряд. Нас интересует, какая сила будет действовать на заряженное тело, ну, или в конечном итоге, как оно будет двигаться, находясь во внешнем электрическом поле. Имеем распределение заряда, мы теперь попробуем получить более точную формулу, не так радикально, а, вот, если уйти достаточно далеко, но ещё, когда это распределение не выглядит совсем точечным, хотим получить более точное приближение.

Сила, действующая на диполь во внешнем поле

Вещество в электростатическом поле

Диэлектрики в электрическом поле С точки зрения электричества, вещество делится на проводники и диэлектрики Проводники – это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела (например, электроны в металле, ионы в жидкости или газе). Диэлектрики – это тела, в которых нет свободных носителей заряда, то есть нет заряженных частиц, которые могли бы перемещаться в пределах этого диэлектрика. Поведение этих тел в электрическом поле различно, и сейчас мы эти различия рассмотрим.

Проводники в электростатическом поле

Конденсаторы Пусть мы имеем отдельный проводник, на который посажен заряд q, этот проводник создаёт поле такой конфигурации Потенциал этого проводника одинаков во всех токах, поэтому можно говорить просто потенциал проводника, а, вообще-то, слово потенциал требует указания точки, в которой этот потенциал определяется. Можно показать, что потенциал уединённого проводника – линейная функция заряда, который на него посажен, , увеличите заряд вдвое, потенциал увеличится вдвое. Это не очевидная вещь, и я не могу привести каких-нибудь аргументов на пальцах, чтобы пояснить вот эту зависимость. Получается так, что структура поля не меняется, ну, картина силовых линий не меняется, просто растут напряжённости поля во всех точках пропорционально этому заряду, но общая картина не меняется

Энергия конденсатора

Энергия электростатического поля

Стационарные магнитные поля

Магнитное поле, создаваемое произвольным проводником с током

Магнитный момент Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет.

Магнитный момент витка с током

Сила, действующая на проводник с током в магнитном поле

Магнитное поле в веществе

Явление электромагнитной индукции

Электродвижущая сила

Закон Ома Для металлических проводников с хорошей точностью выполняется такой закон: , где величина  называется проводимость, это некоторая константа, характеризующая способность проводника проводить ток. Это закон в дифференциальной форме, какое отношение он имеет к закону, который вы хорошо знаете ? Это следствие, кстати, получите его для цилиндрического проводника.

Закон сохранения заряда

Явление самоиндукции

Нестационарные поля описываются полным набором уравнений Максвелла без всяких изъятий:

Энергия магнитного поля

Закон сохранения энергии для электромагнитного поля

Электромагнитные волны Я уже говорил, что Максвелл усовершенствовал уравнения (добавил туда ток смещения), и получилась, наконец, замкнутая теория, и венцом постижения этой теории было предсказание существования электромагнитных волн. Надо понимать, что никто этих волн до Максвелла не видел, никто даже не подозревал, что такие вещи могут быть. Но, как только были получены эти уравнения, из них математически следовало, что должны существовать электромагнитные волны, и лет через двадцать после того, как это предсказание было сделано, они стали наблюдаемы, и тогда был триумф теории.

Волновое уравнение и его решение

На главную