Выполнение домашнего задания по математике

Математика
Типовые задачи курсового расчета
Примеры решения задач
Интегралы
Вычислить объем тела
Вычислить площадь поверхности
Физика
Лабораторные работы по физике
Квантовая механика
Физика электромагнитных взаимодействий

Информатика

Графика и анимация для Web-сайтов
Компьютерные сети
Беспроводные технологии передачи данных
Диагностические утилиты TCP/IP
Электротехника
Лабораторные работы по электротехнике
Конспект лекций
Методы расчета и анализа
электрических цепей
Переходные процессы
Графические и аналитические
методы расчета
Типовые задачи по начертательной
геометрии
Контрольная работа № 1
Основной курс начертательной геометрии
Комплексный чертеж точки (Эпюр Монжа)
Аксонометрические изображения

Метрические задачи

Инженерная графика
Контрольная работа №3
Указания к выполнению задания
по эскизам деталей
Сборочный чертеж
Выполнение технического рисунка
и аксонометрии детали
Построить три вида детали и выполнить
необходимые разрезы
Выполнение сборочного чертежа
Выполнение курсовой работы
по сопромату
Электротехнические материалы
Построение эпюр
Расчеты на прочность
Понятие о напряжениях и деформациях
Расчет сварных соединений

Диаграмма усталостной прочности

Классическая физика
Физика Ньютона
Сила упругости
Выполнение задач по физике
Решение задач по ядерной физике
Законы радиоактивного распада
Ядерная и нейтронная физика
Взаимодействие нейтронов с ядрами
Атомная физика
Курс лекций
Художественная культура и искусство
Первобытное искусство и мифология
Культура и искусство Древнего Египта
Древнегреческая лирика
Литература и искусство эпохи
Возрождения (Ренессанса)
Архитектура периода Киевской Руси
Химия
Получение оксидов
Термохимия
Органическая химия
Неорганическая химия
Атомная энергетика
Программа развития ядерной энергетики
Развитие ядерной индустрии
Эволюция ядерных арсеналов
Ионизирующее излучение
Атомные реакторы и батареи
Крупные аварии на АЭС
Энергетическая  безопасность
 

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.Поэтому первым действием при вычислении предела функции является подстановка значения аргумента

 Решение: В данной матрице 2 строки и 3 столбца, значит, это матрица размера 2

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

Найти координаты векторов  . Решение: Для того, чтобы найти координаты вектора, следует из координат конца вектора (вторая указанная в его названии точка) вычесть координаты начала (первая точка):

Даны точки: А(1;0), В(3;1), С(-2;5) Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координат

Предел последовательности Задания для подготовки к практическому занятию Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…).

Понятие предела последовательности поясним пока на простых примерах: Определение производной функции, ее геометрический и физический смысл, ее свойства подробно описаны в §13 лекций.

Дифференциал функции Пример. Дана функция . Найти ее первый дифференциал dy Решение: Воспользуемся формулой первого дифференциала.

Неопределенный интеграл. Табличное интегрирование.

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций

С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить.

Интегрирование простейших иррациональных выражений

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z= f (xy) в точке (xy), вызванным приращениями аргументов  и , называется выражение .

Задача. Найти частные производные и 

Дана функция двух переменных: z = x2xy + y2– 4x+ 2y + 5 и уравнения границ замкнутой области D на плоскости xОy:x = 0, y = –1, x + y= 3. 

Задача Поверхность задана уравнением z <=  + xy< – 5 x<3 . Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x<0 , y<0 , z<0 ), принадлежащей ей, если x<0 = –1, y0< = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Задача. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области  D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Задача Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0.

Задача Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы   при перемещении единичной массы из точки M(0,1,0) в точкуN(–1,2,3).

Вычислить определенные интегралы:

Двойной интеграл Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных). Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения

Линейные уравнения и уравнения Бернулли. Уравнения в полных дифференциалах.

Линейные уравнения с постоянными коэффициентами Для данных неоднородных линейных уравнений выписать соответствующие однородные линейные уравнения и составить характеристические уравнения:

 Для каждого из данных неоднородных линейных уравнений с постоянными коэффициентами выпишите правую часть и определите, является ли она функцией специального вида.

Изобразим числа на комплексной плоскости.

Задание 3. Указать область дифференцируемости функции  и вычислить производную. Выделить действительную и мнимую часть полученной производной. Решение. Выделим действительную и мнимую часть функции : Неравенство  определяет точки, лежащие на лемнискате и внутри ее. Неравенство  определяет точки, лежащие правее прямой Искомым множеством является пересечение этих областей:

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости . Решение. Для того чтобы найти образ области  при отображении , нужно найти образ границы  области , затем взять произвольную точку из области  и найти ее образ.

 

Полученное разложение содержит и правильную, и главную часть ряда Лорана.

Главная часть ряда Лорана содержит конечное число слагаемых, значит  - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

Задание 11. Вычислить интегралы от функции комплексного переменного: Так как подынтегральная функция  аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница: =.

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах: Решение. Подынтегральная функция имеет внутри контура интегрирования две особые точки  и . Тогда .

 

Сформулируем правило, позволяющее вычислить рассматриваемый несобственный интеграл с помощью теории функций комплексного переменного:

ЗАДАНИЕ 5. Изменить порядок интегрирования в интеграле Изобразим область интегрирования на чертеже. Найдем точки пересечения параболы   и прямой :  т.е. точкам пересечения кривых соответствуют точки, для которых  и . Вертикальной штриховкой покажем порядок интегрирования: сначала по y при фиксированном  x. Сменим штриховку на горизонтальную. Из рисунка видно, что данная область является -трапецией.

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Нетрудно убедиться, что и здесь, как и в предыдущем случае, повторный интеграл, записанный в декартовой системе координат, при вычислении требует значительных усилий; поэтому и в этом случае перейдем к цилиндрической системе координат

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам.

Найти массу пластинки  Очевидно, что область () не является ни -, ни - трапецией; при вычислении двойного интеграла в декартовой системе координат область () пришлось бы разбить на три области. Как для областей, заключенных между концентрическими окружностями с центром в начале координат “родной” является полярная система координат, так и для эллиптических колец “своей “ является эллиптическая система координат (обобщенная полярная система координат)

Цилиндрический брус проектируется на плоскость  в криволинейную трапецию (D): 0 x 1, 0 y . Преобразуем тройной интеграл в повторный и вычислим его:

Вычислить криволинейный интеграл Рассматривается случай параметрического задания кривой  (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: .

РЕШЕНИЕ. Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

Убедиться в потенциальности поля вектора

В нашем случае x sin=0 произведение бесконечно малой на ограниченную поэтому  arctg(x sin) ~ (x sin) Применяя полученные результаты, вычисляем предел

Другой подход к решению задачи  использование логарифмической производной. Приведём и такое решение: ln y = ln2cosx· ln(sin x3); дифференцируем обе части равенства по переменной x:

Составить уравнения касательной и нормали к кривой в данной точке

Вычислить пределы с помощью правила Лопиталя:

ЗАДАНИЕ 21. Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2). Известно, что для дифференцируемой 4 раза в точке x0 функции f(x) существует лишь один многочлен, приближающий её в окрестности этой точки с точностью до слагаемого о((x  x0)4)  это многочлен Тейлора обозначим его : f(x) = + о((x  x0)4). В случае, когда сама f(x) является многочленом 4-й степени, получим f(x) = , то есть о((x  x0)4) = 0. Поэтому коэффициенты искомого многочлена можно найти с помощью формулы Тейлора

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: f(x)=  ln2x, x0 =1.

Найти асимптоты и построить эскизы графиков функций:

Алгебра матриц

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Сложение матриц Операция сложения определена лишь для матриц одинакового размера.

Умножение матрицы на число

Скалярное умножение арифметических векторов

Умножение матриц Пусть . Для того чтобы, существовало произведение   необходимо выполнение условия согласования , т.е. число столбцов матрицы  должно совпадать с числом строк матрицы  (или порядок строк матрицы  должен совпадать с порядком столбцов матрицы ).

Умножение матриц, вообще говоря, некоммутативно, т.е. .

Реакция произведения матриц на операцию транспонирования выражается формулой Пусть , тогда , , т.е. левая и правая части равенства (1.10) существуют и имеют одинаковые порядки.

 Основные типы алгебраических структур

Теория делимости квадратных матриц Справедливо и обратное утверждение.

 Пусть  и  два произвольных непустых множества. Декартовым произведением  этих множеств называется множество всевозможных упорядоченных пар вида , где . При этом две пары  и , где , считаются равными, если . Если , тогда множество  называется декартовым квадратом множества .

 Если на множестве  определены два внутренних закона композиции, которые записываются как сложение и умножение и обладают свойствами:

 перемена местами двух строк или столбцов; обозначения –   или  соответственно;

Свойства элементарных преобразований. Одно элементарное преобразование первого типа эквивалентно четырем элементарным преобразованиям второго и третьего типов.

Эквивалентные матрицы Отношение эквивалентности

Предложение 1.3 Для любой матрицы  существует л‑эквивалентная ей матрица приведённого вида. Во-первых, любую ненулевую строку матрицы , с помощью строчных элементарных преобразований можно сделать приведённой, т.е. если , тогда найдется конечное число строчных элементарных преобразований, применив которые к матрице , мы получим матрицу , строка которой  имеет приведённый вид.

Пример 7. Построить матрицу  приведённого вида, л‑эквивалентную матрице Среди всех матриц размера  выделим множество диагональных матриц

Отношение эквивалентности   Бинарное отношение  на множестве называется отношением эквивалентности на множестве , если оно удовлетворяет условиям:

Матричные уравнения

Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима” очевидно.

Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

Написать матрицу, транспонированную данным:

 Напомним, что при вычислении произведения двух матриц используется скалярное умножение двух арифметических векторов порядка . Будем называть это скалярное умножение «простым», если , и – «сложным», если  (сокращённо ПСУ и ССУ). Посчитаем количества ПСУ и ССУ, которые необходимо совершить, чтобы вычислить матрицу   указанными выше способами.

 Анализ трёх рассмотренных способов вычисления матрицы   позволяет дать рекомендацию: при вычислении матричных произведений с числом сомножителей больше 2-х целесообразно начинать вычисление произведений с наименьшим числом столбцов у правого сомножителя, и заканчивать вычислением произведений с наибольшим числом столбцов у правого сомножителя. ►

Найти матрицу Введём обозначение для степени матрицы И заметим, что ввиду некоммутативности операции умножения матриц

При вычислении степеней матриц и матричных выражений следует попытаться среди малых степеней  найти максимально простую матрицу с тем, чтобы использовать её для упрощения вычисления матрицы .

Пример 15. Разложить матрицу  в произведение простейших Умножая полученное равенство справа на матрицу

Замечание. В следующей главе, основываясь на данном методе обращения матриц, мы построим более эффективную вычислительную схему для нахождения обратной матрицы, связанную с методом Гаусса решения систем линейных алгебраических уравнений.

Первый интеграл является табличным: .

Пример 4. Найти интеграл . Решение. Отделим от нечетной степени один множитель: . Если положить , то . Перейдем в интеграле к новой переменной t:

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

Пример 8. Найти интеграл . Определенный интеграл

Вычислить несобственный интеграл  или установить его расходимость.

Площадь плоской криволинейной трапеции. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление длины дуги кривой. Вычислить длину дуги кривой: , между точками пересечения с осями координат.

Тройной интеграл в цилиндрических и сферических координатах Цилиндрические координаты точки в пространстве - это ее полярные координаты в XOY и координата Z.

Связь сферических и декартовых координат: Далее тройной интеграл сводится к трехкратному в соответствии с неравенствами для области V в сферических координатах.

Эффективно переводить в сферические координаты тройной интеграл по областям, в границах которых есть сфера.

Чётность , нечётность, периодичность. Непрерывность. Поведение в окрестности точек разрыва и у границ области определения. Вертикальные асимптоты.

Делаем вывод о наличии односторонней вертикальной асимптоты

Масса неоднородного тела. Тройной интеграл. Рассмотрим тело, занимающее пространственную область , и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:

Декартовы координаты.

Установим теперь правило для вычисления    такого интеграла. Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.

Вычислим тройной интеграл Цилиндрические координаты.

Сферические координаты.

Пример. Найдем центр тяжести однородного полушара

Если тело неоднородное, то в каждой формуле под знаком интеграла будет находиться дополнительный множитель  - плотность тела в точке P.

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Если m, М - наименьшее и наибольшее значения непрерывной функции f(x,y) в области D, то справедливо двойное неравенство (оценка двойного интеграла):

Вычисление двойного интеграла в декартовых координатах

Изменим порядок интегрирования. При этом нижняя граница области D задана двумя аналитическими выражениями . В этом случае область D нужно разбить на две области Dl, D2 с помощью прямой, проходящей по оси Оу.

Двойной интеграл в полярных координатах Если область интегрирования D - круг или часть круга, то обычно двойной интеграл вычислить легче, если перейти к полярным координатам. Полярный полюс помещается в начало декартовых координат, полярная ось направлена вдоль оси Ох. Формулы перехода к полярным координатам: Двойные интегралы в полярных координатах выражаются через двукратные интегралы вида

Приложения тройного интеграла С помощью тройного интеграла наряду с другими величинами можно вычислить: объём области V по формуле массу m тела V переменной плотностью

Вычисление тройного интеграла в декартовых и других координатах Тройной интеграл в декартовых координатах

Тройной интеграл в сферических координатах Основные свойства и приложения криволинейного интеграла первого рода . Это свойство характерно только для криволинейного интеграла 1-го рода, ввиду того, что dl > 0 при любом движении вдоль кривой MN. С помощью криволинейных интегралов 1-го рода можно вычислять следующие геометрические и физические величины:

Вычисление криволинейных интегралов 1-го рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки.

Физическая задача вычисления работы силы   при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Формула Грина.

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости.

Область интегрирования D задана уравнениями границ. По заданным уравнениям нужно нарисовать кривые или прямые линии, которые образуют замкнутую область D

Если уравнение поверхности не содержит одну из трёх независимых переменных, это является признаком того, что поверхность - цилиндрическая, с образующей, параллельной оси отсутствующей переменной.

Уравнение сферы радиусом R с центром в начале координат имеет вид: РЕШЕНИЕ Интеграл по ломанной линии MNV вычисляем суммой двух интегралов: по отрезку прямой MN и отрезку NV. Определим уравнение прямой интегрирования MN, как уравнение прямой, проходящей через две точки

Функция нескольких переменных и ее частные производные Определение функции нескольких переменных

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Необходимое условие не является достаточным. Точки из ООФ, в которых необходимое условие выполнено, называются критическими точками функции, или точками, подозрительными на экстремум.

Касательная плоскость и нормаль к поверхности

Функции комплексной переменной Определение и свойства функции комплексной переменной

Дифференцирование ФКП. Аналитические ФКП Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

Если область D – правильная в обоих направлениях, то повторный интеграл не зависит от порядка интегрирования, и для вычисления двойного интеграла можно использовать любой из двух порядков интегрирования:

Все перечисленные интегралы можно вычислить в декартовых либо в полярных координатах, переходя к соответствующему повторному интегралу.

Тройной интеграл Некоторые приложения тройных интегралов Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

Криволинейный интеграл II рода (по координатам) где BC – это дуга пространственной линии от точки B до точки C с указанным на ней направлением,  P (x, y, z), Q (x, y, z),  R (x, y, z) – некоторые функции, заданные во всех точках дуги BC.

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Векторное поле Поток векторного поля через поверхность

Формула Остроградского-Гаусса. Дивергенция Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

Соленоидальное векторное поле Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Задача. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0. Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2. Решение. Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется: найти уравнения линий уровня поля; найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется: представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части; проверить, является ли функция w аналитической;

Решение примерного варианта контрольной работы №2 Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

Задача 4. Задан радиус-вектор движущейся точки: . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Производные ФНП высших порядков

Частные производные ФНП, заданной неявно Если каждой паре чисел (x, y) из некоторой области DxOyсоответствует одно или несколько значений z, удовлетворяющих уравнению , то это уравнение неявно определяет функцию 2-х переменных, например, функцию .

Скалярное поле. Градиент. Производная по направлению Говорят, что в двумерной области D xOyзадано скалярное поле, если в каждой точке M(x, y) Î Dзадана скалярная функция координат точки: U(M) = U(x, y).

Функции комплексной переменной

Некоторые приложения тройных интегралов

Векторная функция скалярного аргумента Если каждому значению параметра tиз некоторого промежутка   ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Векторное поле Поток векторного поля через поверхность

Формула Остроградского-Гаусса. Дивергенция Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ  в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью

Задача Дана функция z< = cos<2 (2x< – y<).

На главную