Выполнение задач по физике

Очень вкусно- как заказать осетинские пироги. Заказывайте.

Математика
Типовые задачи курсового расчета
Примеры решения задач
Интегралы
Вычислить объем тела
Вычислить площадь поверхности
Физика
Лабораторные работы по физике
Квантовая механика
Физика электромагнитных взаимодействий

Информатика

Графика и анимация для Web-сайтов
Компьютерные сети
Беспроводные технологии передачи данных
Диагностические утилиты TCP/IP
Электротехника
Лабораторные работы по электротехнике
Конспект лекций
Методы расчета и анализа
электрических цепей
Переходные процессы
Графические и аналитические
методы расчета
Типовые задачи по начертательной
геометрии
Контрольная работа № 1
Основной курс начертательной геометрии
Комплексный чертеж точки (Эпюр Монжа)
Аксонометрические изображения

Метрические задачи

Инженерная графика
Контрольная работа №3
Указания к выполнению задания
по эскизам деталей
Сборочный чертеж
Выполнение технического рисунка
и аксонометрии детали
Построить три вида детали и выполнить
необходимые разрезы
Выполнение сборочного чертежа
Выполнение курсовой работы
по сопромату
Электротехнические материалы
Построение эпюр
Расчеты на прочность
Понятие о напряжениях и деформациях
Расчет сварных соединений

Диаграмма усталостной прочности

Классическая физика
Физика Ньютона
Сила упругости
Выполнение задач по физике
Решение задач по ядерной физике
Законы радиоактивного распада
Ядерная и нейтронная физика
Взаимодействие нейтронов с ядрами
Атомная физика
Курс лекций
Художественная культура и искусство
Первобытное искусство и мифология
Культура и искусство Древнего Египта
Древнегреческая лирика
Литература и искусство эпохи
Возрождения (Ренессанса)
Архитектура периода Киевской Руси
Химия
Получение оксидов
Термохимия
Органическая химия
Неорганическая химия
Атомная энергетика
Программа развития ядерной энергетики
Развитие ядерной индустрии
Эволюция ядерных арсеналов
Ионизирующее излучение
Атомные реакторы и батареи
Крупные аварии на АЭС
Энергетическая  безопасность
 

Физические основы термодинамики Термодинамика, как и молекулярная физика, занимается изучением физических процессов, происходящих в макроскопических системах, т.е. в телах, содержащих огромное число микрочастиц, взаимодействующих друг с другом и внешними телами.

Молекулярная физика и термодинамика изучают один и тот же круг явлений, а именно макроскопические процессы в телах, т.е. такие явления, которые связаны с колоссальным количеством содержащихся в телах атомов и молекул. Но эти разделы физики, взаимно дополняя друг друга, отличаются различными подходами к изучаемым явлениям.

Основное уравнение молекулярно-кинетической теории идеального газа Пусть в сосуде в виде куба со стороной l находится N молекул. Рассмотрим движение одной из молекул

Распределение Максвелла по модулю скорости молекул Обозначим через dNv число молекул, скорости которых лежат в интервале от v до v+dv, тогда dNv/N – характеризует относительное число этих молекул. Принято вводить функцию распределения молекул по скоростям

Явления переноса До сих пор мы рассматривали исключительно равновесные системы, характеризующиеся при постоянных внешних условиях неизменностью параметров (Р, V, T, ) во времени и отсутствием в системе потоков вещества, энергии, импульса.

Лабораторная работа Определение диэлектрической проницаемости жидкости методом двухпроводной линии Цель работы: а) ознакомиться с основами теории Максвелла, свойствами электромагнитных волн и механизмом распространения в двухпроводной линии

Работа газа при изменении его объема

Круговые процессы (циклы) Процесс, при котором система, пройдя через ряд состояний, возвращается в исходное состояние называется круговым процессом или циклом. На диаграмме процессов цикл изображается замкнутой кривой

Реальные газы. Фазовые переходы Силы и потенциальная энергия межмолекулярных взаимодействий

Строение кристаллов. Элементы квантовой статистики Кристаллическая решетка. Виды связей между частицами решетки

Деление кристаллов на диэлектрики, металлы и полупроводники Все кристаллы разделяются на диэлектрики, металлы и полупроводники. Рассмотрим их энергетические зоны.

Тепловые свойства твердых тел (кристаллов) Классическая теория теплоемкости кристаллов. Закон Дюлонга и Пти Простейшей моделью кристалла является правильно построенная кристаллическая решетка, в узлах которой помещаются атомы (или ионы, молекулы), принимаемые за материальные точки. Атом совершает тепловые колебания около положения равновесия.

Электрические свойства кристаллов Классическая электронная теория электропроводности металлов Опыты, проведенные Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно.

Примеры решения задач  Молекулярно-кинетическая теория идеальных газов Задача 1. Определить, сколько киломолей и молекул водорода содержится в объеме 50 м3 под давлением 767 мм рт. ст. при температуре 18°С. Какова плотность и удельный объем газа?

Задача. Чему равны средние кинетические энергии поступательного и вращательного движения молекул, содержащихся в 2 кг водорода при температуре 400 К.

Задача. При каком давлении средняя длина свободного пробега молекул водорода <λ> = 2,5 см при температуре 68°С? Диаметр молекул водорода принять равным d = 2,3·10 –10 м.

Вычислить массу столба воздуха высотой 1 км и сечением 1 м2, если плотность воздуха у поверхности Земли  а давление Р0 = 1,013 ∙ 105 Па. Температуру воздуха считать одинаковой.

Молекулярный пучок кислорода ударяется о неподвижную стенку. После соударения молекулы отражаются от стенки с той же по модулю скоростью. Определить давление пучка на стенку, если скорость молекул 500 м/с и концентрация молекул в пучке 5·10 24  м -3.

Кислород массой m = 2 кг занимает объем V1 = 1 м3 и находится под давлением р1 = 0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема V2 = 3 м3, а затем при постоянном объеме до давления р3 = 0,5 МПа. Найти изменение ΔU внутренней энергии газа, совершенную им работу А и количество теплоты Q, переданное газу. Построить график процесса.

Уравнение динамики поступательного движения тела

Кислород массой 1 кг совершает цикл Карно. При изотермическом расширении газа его объём увеличивается в 2 раза, а при последующем адиабатическом расширении совершается работа 3000 Дж. Определить работу, совершенную за цикл.

Горячая вода некоторой массы отдает теплоту холодной воде такой же массы, и температуры их становятся одинаковыми. Показать, что энтропия при этом увеличивается.

Кинематика Основные формулы

Зависимость пройденного телом пути S от времени t даётся уравнением S=A+Bt+Ct2+Dt3, где С=0,14 , D=0,01 . Через какое время после начала движения ускорение тела будет равно 1 ? Чему равно среднее ускорение тела за время от t = 0 до t = 1 ?

Мерой инертности твердого тела при вращательном движении является момент инерции

Канат лежит на столе так, что часть его свешивается со стола, и начинает скользить тогда, когда длина свешивающейся части составляет 25% всей его длины. Чему равен коэффициент трения каната о стол?

Камень бросили под углом α = 60о к горизонту со скоростью υ0=15 м/с. Найти кинетическую, потенциальную и полную энергию камня: 1) спустя одну секунду после начала движения; 2) в высшей точке траектории. Масса камня m = 0,2 кг. Сопротивлением воздуха пренебречь.

Пуля, летящая горизонтально, попадает в шар, подвешенный на лёгком жёстком стержне, и застревает в нём. Масса пули в 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара равно 1 м. Найти скорость пули, если известно, что стержень с шаром отклонился от удара на угол 10о.

Маховое колесо, имеющее момент инерции 245 кг∙м2, вращается с частотой 20 об/с. Через минуту после того, как на колесо перестал действовать вращающий момент, оно остановилось. Найти: 1) момент сил трения; 2) число оборотов, которое сделало колесо до полной остановки после прекращения действия сил.

Точка совершает гармоническое колебание. Период колебаний 2 с, амплитуда 50 мм, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 25 мм.

Шар массой m = 1 кг, катящийся без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку υ = 10 см/с, после удара 8 см/с. Найти количество тепла Q, выделившееся при ударе.

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при t=0 и при t = 1,5 с; в) начертить график этого движения.

Период затухающих колебаний Т=4 с, логарифмический декремент затухания l = 1,6 , начальная фаза равна нулю. Смещение точки при t =  равно 4,5 см. 1) Написать уравнение этого колебания; 2) Построить график этого движения для двух периодов.

Основы молекулярной физики и термодинамики

Чему равны средние кинетические энергии поступательного и вращательного движения молекул, содержащихся в 2 кг водорода при температуре 400 К.

Задача. Определить, сколько киломолей и молекул водорода содержится в объеме 50 м3 под давлением 767 мм рт. ст. при температуре 18°С. Какова плотность и удельный объем газа?

Определить плотность разреженного азота, если средняя длина свободного пробега молекул 10 см. Какова концентрация молекул?

Определить скорость вылета поршня массой 4 кг из цилиндра при адиабатном расширении кислорода в 40 раз, если начальное давление воздуха 107 Па, а объем 0,3 л.

Определить удельные теплоемкости ср, сv, для смеси 1 кг азота и 1 кг гелия.

В результате изотермического расширения объем 8 г кислорода увеличился в 2 раза. Определить изменение энтропии газа.

Кислород массой m = 2 кг занимает объем V1 = 1 м3 и находится под давлением р1 = 0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема V2 = 3 м3, а затем при постоянном объеме до давления р3 = 0,5 МПа. Найти изменение ΔU внутренней энергии газа, совершенную им работу А и количество теплоты Q, переданное газу. Построить график процесса.

Лед массой 2 кг, находящийся при температуре –10°С, нагрели и превратили в пар. Определить изменение энтропии.

Найдите внутреннюю энергию воздуха S = 1 м2 , h = 8,31 км

Два шарика r1 = 4 см и r2 = 2 см, нагретые до T0 = 1000К, находятся в вакууме на расстоянии d0 = 0.6 м. Между шарами помещена небольшая пластинка ( r0 << d0 ). Найти на каком расстоянии α от первого шарика надо поместить пластину, чтобы температура ее была бы наименьшей.

Идеальный 3х атомный газ. Найти изменение энтропии при изменении объема.

Маленький шарик, обладающий свойствами черного тела нагрет до температуры T = 6000К

Бесконечная прямолинейная тонкая лента шириной =4 см заряжена с поверхностной плотностью

Лодка массой 200 кг стоит на некотором удалении S0 от берега высотой h = 6 м …Найти работу по перемещению лодки

Длинный прямой цилиндрический стержень квадратного сечения. Найти E электрического поля на поверхности стержня в точках, равноудаленных от его ребер.

Идеальный газ в количестве 2 моль совершает процесс

На главную