Понятие о напряжениях и деформациях Потенциальная энергия упрогой деформации Расчет сварных соединений Способ сравнения деформаций Диаграмма усталостной прочности Расчеты на прочность <

Сопромат. Решение задач контрольной работы

Ядро сечения при внецентренном сжатии

При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие. Этого можно достигнуть, не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения, ограничивая величину эксцентриситета.

Конструктору желательно заранее знать, какой эксцентриситет при выбранном типе сечения можно допустить, не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так называемом ядре сечения. Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.



Рис.1. Комбинации положения сжимающей силы и нейтральной линии

Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки и и вычислить координаты и точки приложения силы по формулам, вытекающим из известных зависимостей:

это и будут координаты точек контура ядра и .

При многоугольной форме контура сечения (Рис.2), совмещая последовательно нейтральную ось с каждой из сторон многоугольника, мы по отрезкам и определим координаты и точек границы ядра, соответствующих этим сторонам.

При переходе от одной стороны контура сечения к другой нейтральная ось будет вращаться вокруг вершины, разделяющей эти стороны; точка приложения силы будет перемещаться по границе ядра между полученными уже точками. Установим, как должна перемещаться сила Р, чтобы нейтральная ось проходила все время через одну и ту же точку В (,) — вращалась бы около нее. Подставляя координаты этой точки нейтральной оси в известное уравнение нейтральной оси (линии), получим:



Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной


На главную